3,566 research outputs found

    Generating Hermite polynomial excited squeezed states by means of conditional measurements on a beam splitter

    Full text link
    A scheme for conditional generating a Hermite polynomial excited squeezed vacuum states (HESVS) is proposed. Injecting a two-mode squeezed vacuum state (TMSVS) into a beam splitter (BS) and counting the photons in one of the output channels, the conditional state in the other output channel is just a HESVS. To exhibit a number of nonclassical effects and non-Guassianity, we mainly investigate the photon number distribution, sub-Poissonian distribution, quadrature component distribution, and quasi-probability distribution of the HPESVS. We find that its nonclassicality closely relates to the control parameter of the BS, the squeezed parameter of the TMSVS, and the photon number of conditional measurement. These further demonstrate that performing the conditional measurement on a BS is an effective approach to generate non-Guassian state.Comment: 8 pages, 8 figures. arXiv admin note: text overlap with arXiv:quant-ph/9703039 by other author

    Higher-order properties and Bell-inequality violation for the three-mode enhanced squeezed state

    Full text link
    By extending the usual two-mode squeezing operator S2=exp⁑[iλ(Q1P2+Q2P1)]S_{2}=\exp [ i\lambda (Q_{1}P_{2}+Q_{2}P_{1}) ] to the three-mode squeezing operator S3=exp⁑iλ[Q1(P2+P3)+Q2(P1+P3)+Q3(P1+P2)]S_{3}=\exp {i\lambda [ Q_{1}(P_{2}+P_{3}) +Q_{2}(P_{1}+P_{3}) +Q_{3}(P_{1}+P_{2}) ]} , we obtain the corresponding three-mode squeezed coherent state. The state's higher-order properties, such as higher-order squeezing and higher-order sub-Possonian photon statistics, are investigated. It is found that the new squeezed state not only can be squeezed to all even orders but also exhibits squeezing enhancement comparing with the usual cases. In addition, we examine the violation of Bell-inequality for the three-mode squeezed states by using the formalism of Wigner representation

    Flow-based Intrinsic Curiosity Module

    Full text link
    In this paper, we focus on a prediction-based novelty estimation strategy upon the deep reinforcement learning (DRL) framework, and present a flow-based intrinsic curiosity module (FICM) to exploit the prediction errors from optical flow estimation as exploration bonuses. We propose the concept of leveraging motion features captured between consecutive observations to evaluate the novelty of observations in an environment. FICM encourages a DRL agent to explore observations with unfamiliar motion features, and requires only two consecutive frames to obtain sufficient information when estimating the novelty. We evaluate our method and compare it with a number of existing methods on multiple benchmark environments, including Atari games, Super Mario Bros., and ViZDoom. We demonstrate that FICM is favorable to tasks or environments featuring moving objects, which allow FICM to utilize the motion features between consecutive observations. We further ablatively analyze the encoding efficiency of FICM, and discuss its applicable domains comprehensively.Comment: The SOLE copyright holder is IJCAI (International Joint Conferences on Artificial Intelligence), all rights reserved. The link is provided as follows: https://www.ijcai.org/Proceedings/2020/28
    • …
    corecore